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In this paper, an automatic Smart Irrigation Decision Support System, SIDSS, is proposed to manage
irrigation in agriculture. Our system estimates the weekly irrigations needs of a plantation, on the basis
of both soil measurements and climatic variables gathered by several autonomous nodes deployed in
field. This enables a closed loop control scheme to adapt the decision support system to local perturba-
tions and estimation errors. Two machine learning techniques, PLSR and ANFIS, are proposed as reasoning
engine of our SIDSS. Our approach is validated on three commercial plantations of citrus trees located in
the South-East of Spain. Performance is tested against decisions taken by a human expert.

� 2016 Elsevier B.V. All rights reserved.
1. Introduction

The efficient use of water in agriculture is one of the most
important agricultural challenges that modern technologies are
helping to achieve. In arid and semiarid regions, the differences
between precipitation and irrigation water requirements are so
big that irrigation management is a priority for sustainable and
economically profitable crops (IDAE, 2005).

To accomplish this efficient use, expert agronomists rely on
information from several sources (soil, plant and atmosphere) to
properly manage the irrigation requirements of the crops (Puerto
et al., 2013). This information is defined by a set of variables, which
can be measured using sensors, that are able to characterise the
water status of the plants and the soil in order to obtain their water
requirements. While meteorological variables are representative of
a large area and can be easily measured by a single sensor for a vast
land extension, soil and plant variables have a large spatial vari-
ability. Therefore, in order to use these parameters to effectively
schedule the irrigation of the plants, multiple sensors are needed
(Naor et al., 2001).

Weather is one of the key factors being used to estimate the
water requirements of the crops (Allen et al., 1998). Moreover, it
is very frequent that public agronomic management organisms
have weather stations spread around the different regions. These
weather stations usually provide information of key variables for
the agriculture like reference evapotranspiration (ET0) or the
Vapour Pressure Deficit (VPD) that are of great importance to cal-
culate the water requirements of the crops. Using variables related
to the climate is the most common approach to create crop water
requirement models (Jensen et al., 1970; Smith, 2000; Zwart and
Bastiaanssen, 2004). Using these models, based on solely meteoro-
logical variables, a decision-making system can determine how a
given crop will behave (Guariso et al., 1985).

However, not all the regions have access to an extensive net-
work of weather stations or they may not be nearby a given crop,
thus the local micro-climates are not taken into account if only
these parameters are used. Besides, irrigation models based only
on climate parameters rely on an open loop structure. This means
that the model is subject to stochastic events and it may not be
able to correct the local perturbations that can occur when a unex-
pected weather phenomenon occurs (for instance irrigate the crop
when it’s already raining) (Dutta et al., 2014; Giusti and Marsili-
Libelli, 2015). Finally, monitoring other variables, such as hydrody-
namic soil factors or water drainage, might increase the chances
that the irrigation predicted by the models is properly used by
the plants (Kramer and Boyer, 1995). Therefore, the usage of sen-
sors that measures the soil water status is a key complement to
modulate the water requirements of the crops. Soil variables, such
as soil moisture content or soil matric potential, are considered by
many authors as crucial part of scheduling tools for managing irri-
gation (Cardenas-Lailhacar and Dukes, 2010; Soulis et al., 2015).
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The information from soil sensors can be used to create better deci-
sion models with closed loop structures that adapt to weather and
soil perturbations (Cardenas-Lailhacar and Dukes, 2010; Soulis
et al., 2015). This practice, however, has not been widely adopted
due to the technological limitations of available soil sensors, which
required measured information to be registered and stored, tradi-
tionally using wired dataloggers, and limiting the installation flex-
ibility and the real time interaction. This has changed recently with
new generation sensors and sensor networks that are more versa-
tile and suited to the agricultural environment (Navarro-Hellín
et al., 2015).

Combining climate and soil variables has therefore potential to
properly manage irrigation in a more efficient way than other tra-
ditional approaches. However, it also entails a series of challenges
related with the increased amount of data flow, its analysis and its
use to create effective models, in particular when data provided by
different sources may seem contradictory and/or redundant. Tradi-
tionally, this analysis and modelling is performed by a human
expert who interprets the different variables. The need of a human
agronomist expert is required due to the complexity introduced by
the soil spatial variability, crop species variability and their irriga-
tion requirements over the growth cycle (Maton et al., 2005),
which require comparing crops models and local context variables
to determine the specific water requirements to achieve a certain
goal at a particular location.

The complexity of this problem and the different sources of
variability makes than even the best model may deviate from the
prediction, which favours the use of close loop control systems
combining soil and climate sensors over open loop systems as a
way to compensate possible deviations in future predictions.

Human expertise has been proved effective to assist irrigation
management but it is not scalable and available to every field, farm
and crop and it is slow in the analysis of the data and real time pro-
cessing. Instead, applying machine learning techniques to replace
the manual models and to assist expert agronomists allows the via-
bility of creating automatic Irrigation Decision Support System.
Machine learning techniques have been used previously to esti-
mate relevant parameters of the crop (Sreekanth et al., 2015).
Giusti and Marsili-Libelli(2015) present a fuzzy decision systems
to predict the volumetric water content of the soil based on local
climate data. Adeloye et al. (2012), proposed the use of unsuper-
vised artificial neural networks (ANN) to estimate the evapotran-
spiration also based on weather information solely. King and
Shellie (2016) used NN modelling to estimate the lower threshold
temperature (Tnws) needed to calculate the crop water stress
index for wine grapes. In Campos et al. (2016) the authors pre-
sented a new algorithm designed to estimate the total available
water in the soil root zone of a vineyard crop, using only SWC sen-
sors, which are very dependent of the location. Taking advantage of
the soil information, Valdés-Vela et al. (2015) and Abrisqueta et al.
(2015) incorporates the volumetric soil water content, manually
collected with a neutron probe, to agro-meteorological data. This
information is then fed into a fuzzy logic system to estimate the
stem water potential. Other approaches in the literature also make
use of machine learning techniques – such as principal component
analysis, unsupervised clustering, and ANN – to estimate the irriga-
tion requirements in crops. However they do not specify the quan-
tity of water needed (Dutta et al., 2014), they reduce the prediction
to true or false, and/or they are based on open loop structures
(Giusti and Marsili-Libelli, 2015; Jensen et al., 1970; Smith, 2000;
Zwart and Bastiaanssen, 2004), only considering the weather
information and, therefore, unable to correct deviations from their
predictions.

This paper proposes an automated decision support system to
manage the irrigation on a certain crop field, based on both
climatic and soil variables provided by weather stations and soil
sensors. As discussed, we postulate that the usage of machine
learning techniques with the weather and soil variables is of great
importance and can help to achieve a fully automated close loop
system able to precisely predict the irrigation needs of a crop.
Our presented system is evaluated by comparing it against the
irrigations reports provided by an agronomist specialist during a
complete season in different fields.
2. System structure

An irrigation advice system is based on the concept of predict-
ing the waters needs of the crops in order to irrigate them properly.
Traditionally this decision has been taken by an experienced
farmer or an expert agricultural technician. Fig. 1 shows the flow
diagram of which the proposed system is based.

In this schema, an expert agronomist is in charge of analysing
the information from different sources: Weather stations located
near the crops that collect meteorological data, Crop and Soil char-
acteristics (type, age, size, cycle, etc.) and Soil sensors installed in
the crop fields. The expert analyses the information to provide an
irrigation report, which indicates the amount of water needed to
irrigate properly the crops in the upcoming week. To make this
decision making process manageable, the information needed to
create the irrigation report on the next week is only the informa-
tion of the current week.

Based on this concept, our Smart Irrigation Decision Support
System (SIDSS) is proposed. In order to evaluate the performance
and validity of our approach, the decision system will use the same
information used by the expert agronomist and will output the
water requirements for the upcoming week. This will ensure a fair
comparison between the decisions taken by a human expert and
the SIDSS. To accomplish this, the machine learning system must
be trained with historical data and irrigations reports of the
agronomist, using the irrigation decisions taken in these reports
as the groundtruth of the system. The aim of the system is to be
as accurate as possible to this groundtruth. Several machine
learning techniques were applied and evaluated to achieve the best
performance. Fig. 2 shows a diagram of the SIDSS.

The Irrigation Decision System is composed of three main
components: a collection device that gathers information from
the soil sensors, weather stations that provide agrometeorological
information and the SIDSS that, when trained correctly, is able to
predict the irrigation requirements of the crops for the incoming
week. Table 1 shows the set of possible input variables of the
system.
2.1. Collection device and soil sensors

The information from the soil sensors is gathered using our own
developed device that has been proved to be completely functional
for irrigation management in different crops and conditions
(Navarro-Hellín et al., 2015). This device is wireless, equipped with
a GSM/GPRS modem, and is completely autonomous, so that the
installation procedures are accessible to any farmer.

Fig. 3 shows the collection device installed in a lemon crop field
located in the South-East of Spain.

The device allows to fully configure the recording rates of all the
embedded sensors. In our experiments, a sampling rate of 15 min
was set, since this gives a good balance between providing enough
information to support a correct agronomic decision and maintain-
ing the autonomy of the device with the equipped solar panel and
battery (López Riquelme et al., 2009; Navarro-Hellín et al., 2015).
The information is received, processed and stored in a relational
database.



Fig. 1. Flow diagram of the proposed system.

Fig. 2. Training inputs and targets of SIDSS.

Table 1
Set of possible input variables of the system.

Name Symbol Category

1 Volumetric Water
Content depth 1

VWC1 Soil Sensors

2 Volumetric Water
Content depth 2

VWC2

3 Volumetric Water
Content depth 3

VWC3

4 Soil Water Potential SWP
5 Soil Temperature ST

6 Rainfall RF Weather Stations
7 Wind Speed WS
8 Temperature T
9 Relative Humidity RH

10 Global Radiation GR
11 Dew Point DP
12 Vapour pressure Deficit VPD

13 Crop Evapotranspiration ETc Crop and Soil Characteristics
+ Weather Stations
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2.1.1. Soil sensors
The soil control variables used to provide SIDSS with relevant

information are matric potential (Wm) and volumetric soil water
content (hv), which are common in irrigation management (Jones,
2004). By using these variables, the irrigation can be scheduled
for maintaining soil moisture conditions equivalent or close to field
capacity in order to satisfy the required crop water requirements.
Likewise, they can be used to maintain soil water content or soil
matric potential under certain reference values proper of regulated
deficit irrigation strategies. Both Wm and hv are used to decide the
irrigation frequency and to adjust the gross irrigation doses.

Soil matric potential was measured with MPS-2 sensors (Deca-
gon devices, Inc., Pullman, WA 99163 – USA), while volumetric soil
water content was measured with both 10-HS (Decagon devices,
Inc., Pullman, WA 99163 – USA) and Enviroscan (Sentek Pty. Ltd.,
Adelaide, Australia) sensors.

Besides both previous soil sensors, another sensor is used. A
pluviometer (Rain-o173-matic small, Pronamic Ltd., Ringkøbing,
Denmark) was used under the dripper to provide accurate estima-
tion of the amount of water applied and the irrigation run time.
The information provided by this sensor was used to ensure that
the farmer is following the instruction of the agronomic reports
provided by the expert. Table 2 summarises the variables mea-
sured by the soils sensors.

2.2. Weather stations

Experiments took place in the Region of Murcia, Spain. In this
region, there is a network of 45 agro-meteorological stations
located in irrigated areas, the Agricultural Information Network
System of Murcia (SIAM), funded by the EU and installed to help
estimate the reference evapotranspiration (ET0) and the irrigation
needs of crops after a severe drought between 1979 and 1985.

The variables measured by the stations are the following:



Fig. 3. Device installed in a lemon crop field.
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Temperature (T), Relative humidity (RH), Global radiation (GR),
Wind speed (WS), Rainfall (RF), Dew point (DP), Vapour Pressure
Deficit (VPD).

These variables, measured by the different stations, are publicly
available and can be downloaded from the SIAM website (SIAM,
2015). The weather stations are tested and calibrated periodically
according to the manufacturer’s specifications.

The amount of water required to compensate the evapotranspi-
ration loss from the cropped field is defined as crop water require-
ment. Therefore, knowing the reference crop evapotranspiration is
of key importance to estimate the crop’s water requirements.
Using the FAO Penman–Monteith formulation (Allen et al., 1998),
the daily reference crop evapotranspiration (ET0) can be calculated
by means of the weather information. The crop evapotranspiration
under standard condition (ETc) can be calculated using the single
crop coefficient approach shown below:

ETc ¼ K � ET0 ð1Þ
where Kc is the crop coefficient and depends on multiple factors,
namely, the crop type, climate, crop evaporation and soil growth
stages.

2.3. Smart Irrigation Decision Support System

The decision support system is the component in charge of
taking the final decision on the amount of water to be irrigated,
Table 2
Soil sensors technical information.

Sensor Measured data Variable name Range R

10HS Soil moisture VWC1, VWC2, VWC3 0–57% VWC 0
MPS-2 Soil matric potential

and temperature
SWP �10 to �500 kPa 0
ST �40� to +50 �C 0

Enviroscan Soil moisture VWC1, VWC2, VWC3 0–65% VWC 0
or equivalently, the number of minutes to irrigate considering
constant water flow. This decision is taken automatically on the
basis of the information provided by the sensors and the usage of
machine learning and pattern recognition techniques. The aim of
this component, therefore, is to mimic a human expert in the deci-
sion making process of weekly optimising the irrigation, which
could assist the farmer.

Applying machine learning techniques such as Principal Com-
ponent Analysis (PCA) or Linear Discriminant Analysis (LDA) allow
us to visualise the information to perform an initial exploratory
analysis. Fig. 4 shows the LDA of the input, array containing the
sensorial variables, and output, the estimated irrigation time need,
used in the system. The output was divided in classes (18), each
one representing the weekly irrigation time by increments of
150 min, from 0 to 2700 min. From this figure, it can be noticed
that discrete classification in classes will be hard to accomplish
due to the high number of classes necessary to precisely quantise
the irrigation estimation. This is due to the fact that the variable
to estimate – either the amount of water or the watering time-
has an intrinsic continuous nature, since the expected output can
take any real value between 0 and infinity. Therefore, conventional
classifiers aiming categorical outputs – such as LDA (Fisher, 1938),
SVM (Belousov et al., 2002), and ANN are not optimal for this appli-
cation. Instead, methodologies based on regression (Wold et al.,
1984), and/or fuzzy logic (Zadeh et al., 1996) allow us to estimate
a more suited continuous variable.

In this section, we propose two different techniques, each
belonging to one of the previous families, to estimate the weekly
required amount of water. As described in the introduction and
experimental sections, both modelling techniques require a super-
vised training set in order to learn the irrigation model.

2.3.1. Partial least square regression
Partial Least Square Regression (PLSR) (Wold et al., 2001) is a

statistical method that seeks the fundamental relations between
predictor and response variables. Predictor variables, X, are defined
as the observable variables that can be measured and input into
the decision system. Response variable Y are the outputs or esti-
mates that must be deducted from the input.

The relationship between both variable sets, and linear multi-
variate regression model, is found by projecting both predicted
and observable variables into a new space, where latent variables
are estimated to model the covariance structure between the pre-
dictor space and the observation space.

This PLSR model is developed from a training set D = {X, Y} of S
samples, which is composed of the predictor matrix X = [x1, . . . ,
xi, . . . , xS]T and the response matrix Y = [y1, . . . , yi, . . . , yS]T. xi is a
column vector of K elements, that can contain all the sensor and
weather variables measured at a given week i:

xi ¼ ½VWC1;VWC2;VWC3;MP; ST;ETc;RF;WS;T;RH;GR;DP;VPD�T
ð2Þ

and yi is another column vector of M elements, containing the cor-
responding variables to be estimated at that week i. Since in our
application this is only the irrigation time recommended at that
week, yi is reduced to a scalar and M = 1:
esolution Supply voltage range Output URL

.08%VWC 3–15 VDC 0.3–1.25 V http://www.decagon.com/

.1 kPa 6–15 VDC SDI-12 http://www.decagon.com/

.1 �C

.003%VWC 8–32 VDC 4–20 mA http://www.sentek.com.au/

http://www.decagon.com/
http://www.decagon.com/
http://www.sentek.com.au/


Fig. 4. Linear discriminant analysis for 18 irrigation time intervals.
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yi ¼ minutes of irrigation

PLSR constructs new predictor latent variables, known as com-
ponents, which are linear combinations of the original predictor
observable variables. These components are created to explain
the observed variability in the original predictor variables, while
simultaneously considering the response variable. That is, the
estimated latent variables are linear combinations of predictor
variables that have higher covariance with Y. Using the latent vari-
ables leads to a regression models able to fit the response variable
with fewer components.

The PLSR learning model can be expressed as:

X ¼ T � PT þ E ð3Þ

Y ¼ U � QT þ G ð4Þ
where T and U are the projections – aka scores – of X and Y into a
smaller L-dimensional latent space respectively, P and Q are the
orthogonal projection matrices – aka loading matrices – and E
and G the error residuals. P and Q can be obtained by eigendecom-
position of the original matrices.

Since the X-scores T are meant to be good predictors of Y, it can
be approximated that:

Y ¼ T � QT þ F ð5Þ
Being F a new residual. This reduces the problem to find a set of

weights W such that T = X ⁄W predicts X and Y reasonably well. As
mentioned, these orthogonal coefficients should maximise the
correlation between X and Y while explaining the variance of X:

max
w

Corr2ðY ;XÞ � VarðXÞ ð6Þ

P and Q can be solved by applying a Least Square Estimator
(LSE) so:

QT ¼ ðTT � TÞ�1 � TT � Y ð7Þ

PT ¼ ðTT � TÞ�1 � TT � X ð8Þ
Finally, by rewriting the previous equation, it can be derived

that:
Y ¼ T � QT þ F ¼ X �W � QT þ F ¼ X � Bþ F ð9Þ
Being B the PLSR regression coefficients. Once these coefficients

have been learned, responses y⁄ for new observation x⁄ can be
estimated by applying the learning model:

y� ¼ x� � Bþ f ð10Þ
assuming an estimation error f.

We favour the use of PLSR among other regression techniques
due to its suitability when the number of predictors is bigger than
the number of response variables, the responses are noisy and
there is a high probability of having multicollinearity among the
predictor variables. The multicollinear phenomenon happens
when those variable are highly correlated, due to redundancy
between sensors and or between meteorological factors. As it can
be noticed, all these factors appear in our irrigation problem.

2.3.2. Adaptive neuro fuzzy inference systems
Adaptive Neuro Fuzzy Inference Systems (ANFIS) (Jang, 1993) is

a fuzzy inference system for systematically generating fuzzy rules
from a given input/output D dataset. This machine learning tech-
nique combines advantages from fuzzy logic and artificial neural
networks. On the one hand, it allows us to represent an element
not only into categories but also into a certain degree of member-
ship functions, which allows mimicking the characteristics of
human reasoning and decision making. On the one hand, it can
be trained and so can self-improve in order to adjust the member-
ship functions parameters directly from data (Wang et al., 2006).

The ANFIS architecture consists in a five-layer feedforward
neural network (Fig. 5) whose parameters are updated using a
combination of gradient descent and LSE in a two-pass learning
algorithm.

In a first forward pass step, neuron outputs are calculated layer
by layer and some internal consequent parameters are identified
by the least squares estimator (LSE) to obtain the final single
output. The forward pass operation at layer 1 defines the fuzzy
membership for each input variable X. Assuming a Gaussian distri-
bution function Nðcn;rnÞ, the output of this layer is given by:

O1;n ¼ lAnðxÞ ¼ e
�ðx�cn Þ2

2r2n ð11Þ



Fig. 5. Example of ANFIS architecture for a input x with K variables and a 1-variable output y.
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Layer 2 is a multiplicative layer, which calculates the firing
strength of the rules as a product of the previous membership
grades.

O2;n ¼ wn ¼
Y

kn

lAknðxÞ ð12Þ

Layer 3 is a normalising layer, where:

O3;n ¼ �wn ¼ wnP
jwj

ð13Þ

Layer 4 applies a node function:

O4;n ¼ �wn � f n ¼ �wn � ð
X

k

pn
kxk þ rnÞ ð14Þ

where pn and rn are consequent parameters estimated using LSE.
Finally, layer 5 is the output layer that provides the overall esti-

mation y as a summation of all incoming signals. For the case
M = 1, where only one output variable is estimated:

O5;1 ¼
X

n

�wn � f n ð15Þ

After the forward pass has been completed, an initial estimation
is provided by the ANFIS network. Since initial premise parameters
cn;rn are initialised randomly, the initial estimation will differ
greatly from the desired values Y. This error or difference between
the desired output y and the estimated output O5;1 for a given
training sample {xi, yi} can be expressed as:

Ei ¼ ðyi � O5;1Þ2 ð16Þ
To correct this deviation, a second learning step, or backward

pass, attempts to minimise the estimated error by modifying the
value of the premise parameters until the desired and estimated
outputs are similar. This process is performed using backpropaga-
tion, where the error is propagated back over the layers and
decomposed into the different nodes using the chain rule. Gradient
descend is used as optimisation technique to update the premise
parameters while the consequent parameters are kept fixed until
the next iteration.

This double step learning process is repeated iteratively for
every single sample in the training set until the estimated error
is smaller than a given threshold, i.e. convergence is achieved, or
a maximum number of iterations – epocs – are reached. The ANFIS
implementation used in this work is taken from the Fuzzy logic
toolbox (Inc, 2016), by Mathworks where the parameter Radii used
to train was a scalar of value 0.75 and the average number of
epochs used to train was 1500.
3. Experimental setup

The system was evaluated in three commercial plantations of
lemon trees in the Region of Murcia, located in the semiarid zone
of the South-East of Spain where the water is very scarce and drip
irrigation is commonly used. The irrigation criteria followed was to
maximise the yield.

Plantation 1. Fino lemon trees (Citrus limon L. Burm. Fil cv. 49)
on Citrus macrophylla Wester, growing in a soil with a low water
retention capacity. The soil is characterised by a deep and homoge-
neous sandy – clay – loam texture. The irrigation water had an
electrical conductivity (EC) of 2200 lS cm�1. The orchard consist
of 11 year old lemon trees with an average height of 3.5 m. Tree
spacing was 7.0 m � 5.5 m, with an average ground coverage of
about 47%. Two drip irrigation lines (0.8 m apart) were used for
each tree row. There were 4 emitters (4 L h�1) on both sides of each
tree. One sensor node was installed in the 5.5 ha orchard, with a
soil matric potential sensor (MPS-2, Decagon devices, Inc., Pullman,
WA 99163 – USA) at a depth of 30 cm and three soil moisture sen-
sors at a depth of 20, 40 and 80 cm (Enviroscan, Sentek Pty. Ltd.,
Adelaide, Australia) located 20 cm from a representative dripper
and 2.25 m from the trunk.

According to the nearest weather station of SIAM, located about
5 km from the orchard, the climate was typically Mediterranean.
Thus, over this period (2014), the annual rainfall for the area was
210 mm and ET0 was 1395 mm. The average wind speed was
1.66 m/s, generally light wind and sometimes moderate.

Plantation 2 and 3. 40 and 35 year old lemon trees (C. limon L.
Burm. Fil) cv. Fino and cv. Verna respectively, grafted on sour
orange (Citrus aurantium L.), growing in a soil with a mediumwater
retention capacity. The soil is clay sandy loam texture and the irri-
gation water had an electrical conductivity (EC) of 1600 lS cm�1

during all season except in summer which was of 2285 lS cm�1.
The tree spacing was 7.0 m � 6.75 m and 6.75 m � 6.75 m and
the average ground coverage about 57% and 50%, respectively.
One drip irrigation line was used for each tree row. There were 8
and 6 emitters of 4 L h�1 per tree, respectively. One sensor node
was installed in the Fino orchard (�15 ha) and another in Verna
orchard (�23 ha), each with two soil matric potential sensor
(MPS-2, Decagon devices, Inc., Pullman, WA 99163 – USA) at a
depth of 25 and 45 cm and three soil moisture sensors at a depth
of 25, 45 and 70 cm (10HS, Decagon devices, Inc., Pullman, WA
99163) located 20 cm from a representative dripper and the verti-
cal canopy projection.

According to the nearest SIAM’s weather station, located about
7 km from the orchards, the climate was also typically Mediter-
ranean. Over this period (2014), the annual rainfall for the area



Table 3
Features subset and variables associated.

Feature set Variables

F1 VWC1, VWC2, VWC3, SWP, ST, ETc, RF
F2 VWC1, ETc, RF
F3 SWP, ST, ETc, RF
F4 SWP, ETc, RF
F5 SWP, ST, ETc
F6 VWC1, SWP, ETc
F7 VWC1, SWP, ETc, RF
F8 VWC1, SWP, ST, ETc
F9 VWC1, VWC2, VWC3, SWP, ETc
F10 VWC1, SWP
F11 VWC1, VWC2, VWC3, SWP
F12 SWP, ETc
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was 150 mm and ET0 was 1250 mm. The average wind speed was
1.4 m/s, i.e. light wind generally.

The decision of selecting these three plantations is based on the
fact that all of them are mature lemon trees and therefore their
water irrigation requirement differences depend mainly of envi-
ronmental conditions (soil and atmosphere) rather than the plant.
Besides, all the plantations use drip emitters of 4 L h�1 so estimat-
ing the irrigation runtime of the week instead of the water volume
will be a correct approach.

Drip irrigation provides a fixed volume of water per hour; the
pressure is maintained using pressure compensating emitters.
The Irrigation frequency is calculated taking into account that only
a certain amount of water depletion is allowed before the next
replenishment is scheduled. Thus, the run time (gross irrigation
dose) is determined to be equivalent to the previous amount of
water depletion. The experts only need to calculate the irrigation
run time (minutes) and the number of watering times per week
or day depending on the time of year or crop development stage.
The main goal of the system, also reflected by the expert agrono-
mist in his reports, is to maximise the yield (maximum production
per crop surface) with an optimum water management.

Since information from the weather stations, soil sensors and
crops characteristics has different sampling periods, the first step
is pre-process this information. After analysing several methods
and time intervals it was decided that the best option was to cal-
culate the week average value for each of the sensors or weather
stations variable except for the rainfall where the total amount
of rainfall during the week is used instead. The week average fits
better than others method like the daily average due to the fact,
that the irrigation reports from the expert agronomist are already
fixed, limited and done weekly. Besides, adding more input will
make the data sparser, making more difficult to find patterns in
the feature space, requiring a higher amount of data to train the
system accordingly.

The input obtained will be a one dimensional vector xi for each
week in which the columns are the different variables or inputs of
our system.

The target vector will be the water requirements of the crops in
the followingweek yi. This information has been extracted from the
agronomist expert weekly reports in order to be used as ground-
truth for comparison as for supervising the learning process.

Three datasets are available, each dataset represent a different
plantation. Data was collected from January 2014 until June
2015. Each plantation dataset has 74 weeks of data, which makes
a total of 224 weeks of data. To accomplish a proper analysis of
the system, we have divided the experiment in two different sce-
narios. Both scenarios differ from the other on the training and
testing split.

Two machine learning methods are applied on each scenario, a
method based on PLSR and a method based on ANFIS. The perfor-
mances of both methods in the different scenarios are analysed.

4. Experimental results and discussion

4.1. Scenario 1

In this scenario, we aim to successfully predict the irrigation
needs of one or several plantation, based on the information pro-
vided by the collection device and learned knowledge from a his-
torical archive of the previous year irrigation reports. This is of
obvious usefulness in real life. We will demonstrate this capability
by predicting the irrigation needs of year 2015 for the three plan-
tations based on the information of the year 2014. The training set
is therefore composed by all 2014 weeks of data belonging the
three plantations, while the test set is composed by all 2015 weeks
belonging to the three plantations.
The information given to the system, or input vector, is a critical
part of the design. On the one hand using unnecessary features
may make the system perform poorly due to redundant informa-
tion and noise. On the other hand, using too few features may
not provide all the required information. Therefore, among all the
available features explained in Table 1, they will not all be neces-
sary. Table 3 shows the features subsets selected for each test.
Among all possible sets of features, only combinations with logical
sense, according to an expert agronomist were chosen a priori for
the different experiments. Performance of the different sets is
shown in Fig. 6.

The set that accomplish the best performance for both methods
is F6, with and error of 155.1 and 121.1 min week�1 for PLSR and
ANFIS respectively. In order to put this error into context, it can
be noticed that 2.5 extra hours of irrigation represent around
10% of the total time in summer months – and up to 20% in spring
and autumn months, being 10% error considered as an acceptable
error in agriculture (Bos et al., 2004). Therefore, this feature set
F6 will be the input vector of the system. It can be noticed that
including the rain as input of the system (F7), increases the error.
In the Region of Murcia, the rainfall are extremely low (around
210 mm per year) and usually being concentrated in a few days
of the year, being the weekly total rain in most cases 0. With this
information only available for the year 2014, the system didn’t
have enough information to be trained properly and developed in
unpredictable results. However we understand that in other
regions the rainfall could be really useful to increase the perfor-
mance of the system. Besides, considering the water retention
capabilities of the soil, part of the rainfalls would be considered
in the next irrigation report.

Fig. 7 shows the water irrigation pattern over time predicted by
the PLSR and ANFIS respectively when using feature set 6.

The weekly errors for predicting the irrigation needs during the
year 2015 in the three plantations are 155.1 and 121.1 min week�1

for PLSR and ANFIS respectively. The standard deviation for PLSR is
120.7. In the case of ANFIS, the standard deviation is 105.2. The
total amount of time needed to irrigate the crops in the three plan-
tations in 2015 is 65,641 min. ANFIS method estimates this value
in 60,506 min and PLSR estimates 63,240 min. As conclusion,
ANFIS performance is better than PLSR for each individual week
water requirement estimation. However, PLSR estimation also fol-
lows the irrigation pattern accurately and estimates the total
amount of water required more accurately over time than ANFIS,
which seems to be more conservative in the water usage. Looking
at the higher peaks of water requirement in the graphs, PLSR may
overestimate the water needs while ANFIS is more accurate in gen-
eral. It is important to note that in agronomy the most important
point is not only the amount of water plants need but when they
need it (Allen et al., 1998). Following this criterion, the perfor-
mance of ANFIS is much better than PLSR for this scenario.



Fig. 6. Performance of the different sets of variables for linear regression and ANFIS.

Fig. 7. Prediction of the water irrigation pattern using soil and weather information for the different plantations (Plantation 1: Week 1–24, Plantation 2: Week 25–48,
Plantation 3: Week 49–72).

Table 4
Summary of the performance of the different subsets.

System Input vector Weekly error
(min)

PLSR ANFIS

Soil + weather variables (F6) VWC1, SWP, ETc 155.1 121.1
Only weather variables ETc 175.3 159.6

ETc, RF 178.4 163.6
ETc, RF, WS 378.4 379.5
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Another factor that is important to analyse in this research is
the use of soil sensors in addition to weather stations to close
the loop. We consider that using this kind of sensors to estimate
the water requirements of the crops improves the accuracy of
the estimation and helps to deal with local disturbances. Since this
is one of our main contributions and differences with other pro-
posed automatic irrigation systems, a detailed analysis of the con-
tribution of these variables is needed to validate our hypotheses
and facilitate comparison with previous research systems. There-
fore, the input vector was changed, using only weather information
to train the system and predict the irrigation time. Table 4 shows
the weekly average error for different sets of input vectors.

The weather-only input vector that performs best is produced
using ET0 exclusively, so this is used in the following analysis as
representative of the weather-only prediction systems. Fig. 8
shows the results of PLSR and ANFIS methods using the ETc in com-
parison to the F6 system.

The error in PLSR using only weather information is
175.3 min week�1 with a standard deviation of 147.6. In the case
of ANFIS, the error is 159.6 min week�1 with a standard deviation
of 146.6.

Although in general the shape of the graph is quite similar to
the one using both soil and weather. The use of soil sensors gives
a fine adjustment increasing the accuracy of the estimation for
both PLSR and ANFIS reasoning engines.

It can be concluded that a much better performance in the
weekly irrigation estimation (around a 22% smaller weekly average
error) is achieved when adding soils sensor information to the
weather information.
Next, a cross-validation strategy is applied to the scenario to
validate how the results will generalise to an independent dataset.
In cross validation, the complete dataset of the three plantations is
divided in training and testing sets. The method used to cross-
validate the information is Leave one out (LoO CV), a particular
case of the Leave-p-out cross-validation (LpO CV). Kohavi (1995)
and Picard and Cook (1984) that involves using 1 observation as
the testing set and the remaining observations as the training
set. This process is repeated the number of samples times (n)
changing the test sample each time to validate the system with
all the samples. Cross validation method was used for both PLSR
and ANFIS.

Fig. 9 shows the results of this LoO Cross-Validation method for
PLSR and ANFIS respectively using the set F6 as input vector.

The error in PLSR is 277.8 min week�1 with a standard deviation
of 153.2. In the case of ANFIS, the error is 87.6 min week�1 with a
standard deviation of 102.9. The total amount of time needed to
irrigate the crops for the 189 weeks in the three plantations is



Fig. 8. Prediction of the water irrigation pattern using weather information for the different plantations (Plantation 1: Week 1–24, Plantation 2: Week 25–48, Plantation 3:
Week 49–72).

Table 5
Scenario 1 results summary.

Results Average weekly error (min)

With soil sensors No soil sensors

Scenario 1 Predict 2015 PLSR 155.1 175.3
ANFIS 121.1 159.6

Cross-Validation PLSR 277.8 295.7
ANFIS 87.6 211.9
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214,020 min. The ANFIS method estimates this value on
213,180 min and PLSR estimates 213,960 min. Table 5 summarises
the result of the experiments.

Similar conclusions are extracted using Cross-Validation. Both
PLSR and ANFIS systems are really close to the groundtruth in
the total amount of water estimated but it is clear that ANFIS per-
forms much better than PLSR if we consider the weekly error. It is
also confirmed that using soil sensors in addition to weather infor-
mation results in a better performance for both ANFIS and PLSR
methods.

The improvement on ANFIS performance during cross valida-
tion is explained by the larger amount of training data regarding
the ‘‘predict 2015” experiment. This behaviour is expected due to
the nature of neural networks, which require large amount of data
to be trained in comparison with other machine learning tech-
niques and we predict than having a historical archive longer for
training could results in a further improvement.

Although we are validating our systems with the three planta-
tions described before as case of study, in principle, our methodol-
ogy has been designed to be independent of the crop, terrain and
location of the plantation, aiming to propose a general close-loop
automatic irrigation estimator. In practical terms, this means that
to apply our system to new plantations, training data in the form
of sensor and weather weekly data as well as irrigation reports
provided by and expert agronomist for the new plantation will
Fig. 9. Cross-validation LoO prediction for linear regression and ANFIS (Plantation 1: W
Weeks 105–156 and 205–229).
be needed. Since these reports can be expensive and compiling a
substantial amount of weekly reports is time consuming and must
be planned in advance, it is important to know how big the dataset
must be and how the performance may improve with the number
of training weeks.

Therefore, as final experiment to obtain an estimation of the
required amount of training data for a new crop/plantation, the
complete dataset was divided in different percentages of training
and testing. Fig. 10 shows the weekly error of both PLSR and ANFIS
methods with respect to the training dataset percentage.

According to the figure, it is noticeable that ANFIS performance
is much better than PLSR if there are enough samples to train the
system. In cases where the percentage of samples for training is
low (less than 25% of the data, i.e. less than 4 months of data for
a given field), PLSR overperforms ANFIS. This case is relevant for
eeks 1–52 and 157–180, Plantation 2: Weeks 53–104 and 181–204, Plantation 3:



Fig. 10. Performance comparison for linear regression and ANFIS with respect to
the % of samples used to train.
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new plantations without historical data of previous reports. In such
situations, the PLSR predictive model may be used in early stages,
before switching to ANFIS once enough samples to train the system
properly are collected.
4.2. Scenario 2

The goal is to predict the irrigation of a plantation based on its
weather and soil measured variables but using a SIDSS system
trained exclusively with other fields. This will be the hardest sce-
nario as it will be necessary to predict the irrigation needs of a field
with no previous irrigation reports of that specific plantation. This
scenario attempts to show the potential of our methodology to cre-
ate a universal irrigation estimator of a given crop – in our case,
lemon trees – for any givenplantation, independently of the location
and/or terrain. A lower performance can be expected in comparison
towhat couldbeachievedby retraining the systemwith information
of the plantation (scenario 1), which is sacrificed for the benefit of
not having to generatemanual irrigation report for newplantations.
Cross validation, specifically leave-one_plantation-out is applied in
validation. Thus, 2014 and2015 data from twoof the plantations are
used for training,while the remainingplantation data (2014 + 2015)
is used for testing. This is repeated 3 times, leaving a different plan-
tation out of the training set each time, and the results averaged.

Table 6 shows the error and standard deviation of this scenario
for PLSR and ANFIS using different features vector used to compare
the performance.

The best feature vector F6 used in scenario 1 is used as input. In
this case PLSR outperforms ANFIS with an average error of
257.0 min in comparison with 323.3 min for ANFIS. However, we
noticed that, in this scenario, removing the VWC1 sensor results
in a better performance for both methods as a universal estimator.
This is explained because the VWC sensor is very dependent on the
soil where it is installed and, as both algorithms were trained with
Table 6
Scenario 2 results summary.

Method Features vector Test plantation 1 Test plantation 2

Weekly error (min) Std Weekly error (min

PLSR VWC1 + SWP + ETc 364.1 205.6 179.4
ANFIS VWC1 + SWP + ETc 373.2 300.7 175.4
PLSR SWP + ETc 182.2 133.3 176.2
ANFIS SWP + ETc 200.8 140.1 156.5
a sensor installed in a different plantation than the one that is pre-
dicting, the provided information introduces noise and does not
help the system to estimate properly the water need. This does
not happen, however, with the SWP sensor, which quantifies the
tendency of water to move from one area to another in the soil
and it is less dependent on the soil installed. Removing the VWC
sensor results in a better performance of the system obtaining an
average weekly error of 194.4 min with PLSR and 197.4 min with
ANFIS. This result proves that there is certain potential to develop
a universal estimator using our system for a given crop, although
this means an increase of the average error. This error could be
reduced if more than 2 plantations of the same crop were available
for training. Both PLSR and ANFIS performs similarly, being PLSR
slightly better.
5. Conclusions

This paper describes the design and development of an auto-
matic decision support system to manage irrigation in agriculture.
The main characteristic of system is the use of continuous soil
measurements to complement climatic parameters to precisely
predict the irrigation needs the crops, in contrast with previous
works that are based only on weather variables or doesn’t specify
the quantity of water required by the crops. The use of real-time
information from the soil parameters in a closed loop control
scheme allows adapting the decision support system to local per-
turbations, avoiding the accumulative effect due to errors in con-
secutive weekly estimation, and/or detecting if the irrigation
calculated for the SIDSS has been performed by the farmer. The
analysis of the performance of the system is accomplished compar-
ing the decisions taken by a human expert and the decision sup-
port component. Two machine learning techniques, PLSR and
ANFIS, have been proposed as the basis of our reasoning engine
and analysed in order to obtain the best performance.

The experiments have taken place in three commercial planta-
tions of citrus trees located in the South-East of Spain. A first exper-
imental scenario shows a comparison of the system’s performance
using soil sensors in addition to the weather information for pre-
dicting year 2015 using 2014 information to train the system.
The usage of soil sensor in the three plantations accomplished a
22% less of weekly error in comparison to the performance of using
only weather information.

A second scenario shows the potential of our system as universal
estimator for a given crop, i.e. the use case of installing the system
in a new plantation, not having previous information of it. For this
application, VWC sensors should be removed due to their high
dependence with the soil type. Although, as expected, the estima-
tion error increases in this scenario, it does not require historical
data from agronomical reports to be retrained, which implies a sig-
nificant advantage, in particular for new plantations in early stages.
If more training data from a bigger variety of field were available, a
better performance in this scenario could be expected. Another pos-
sible improvement for this scenario will be the addition of a VWC to
get a better performance than using only the matric potential
Test plantation 3 Total

) Std Weekly error (min) Std Average weekly
error (min)

Average Std

141.2 227.5 185.8 257.0 177.5
129.8 421.4 495.5 323.3 308.6
120.9 224.9 172.38 194.4 142.2
126.9 234.8 192.6 197.4 153.2
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sensors. However, in order to use the VWC sensor in this scenario, a
precise study of the soil textures of the plantation will be required
to extrapolate the VWC sensor information to similar soil textures
where the DSS was trained.

For future research, we aim to extend and evaluate the system
in plantations different than citrus and analyse the performance
under several conditions and regions. Thus, adding the weather
forecast as input of the SIDSS could help to improve the next week
irrigation schedule and consider the predicted rainfall in our esti-
mation. Similarly, past rainfall information, that did not prove ben-
eficial in our system due to the region of Murcia characteristics,
may become a good factor to improve the accuracy of the system
in regions with a more regular and predictable raining pattern.
We also aim to capture a bigger dataset that will allow us to gen-
erate more general models towards a universal irrigation estimator
of a given crop. This dataset will also explore the use of multiple
sensors per plantation in order to address inhomogeneous ground
conditions in the different plantation as well as provide more input
information to the system for a better reasoning.
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