Internet of Things based approach to Agriculture Monitoring

A. Paventhan ERNET India Regional Centre, Bangalore

Asia-Pacific Advanced Network (APAN) 36th Meeting 20th August 2013

Outline

1	IP-based WSN Monitoring - Background
	Internet of Things
	• Key IoT enabling technologies / standards
	6LoWPAN Overview
	CoRE architecture

- Constrained Application Protocol (CoAP)
- IoT protocols standardization efforts

2 Agriculture Usecase

- Application Requirements
- Agriculture Sensor Network
- Agriculture sensor as CoAP Resource
- Deployment Architecture & plans
- Remote Sensor Network Connectivity
- Implementation
- Remote agriculture field
- Monitoring Soil Sensor using CoAP
- 3 Conclusion & Future Work
 - ERNET IoT Testbed plan
 - IoT Testbed Architecture

Agriculture Usecase Conclusion & Future Work Internet of Things Key IoT enabling technologies / standards 6LoWPAN Overview CoRE architecture Constrained Application Protocol (CoAP) IoT protocols - standardization efforts

Internet of Things - Introduction

- Present day networking technologies are optimized for Human-to-Human interactions rather than Machine-to-Machine (M2M) communications
- Internet of Things (IoT) aims to extend Internet to large number of distributed devices by defining standard, interoperable communication protocols
- The major objective of Internet of Things (IoT) is to create a smart environment (smart buildings, smart health, smart transport, etc.) using enabling technologies such as sensors, embedded devices, communication protocols
- Industry estimate predicts that there would be 50 billion devices by 2020

3/19

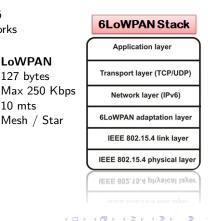
Internet of Things Key IoT enabling technologies / standards 6LoWPAN Overview CoRE architecture Constrained Application Protocol (CoAP) IoT protocols - standardization efforts

Some key IoT enabling technologies / standards

- IEEE 802.15.4 LoWPAN specification defining the PHY and MAC layer of low power devices supporting 250 Kbps data rate, small packet size 127 bytes
- IETF 6LoWPAN (RFC 4944/RFC 6282) enables seamless integration of LoWPAN devices with internet leveraging IPv6 large address space and appln. layer protocol reuse.
- IETF CoAP open application layer specification for constrained nodes supporting HTTP and Web integration.
- Bluetooth SMART devices support low energy radio operations (e.g, heart-rate monitors, blood glucose monitors) suitable for health care and fitness etc.
- RFID / NFC tags, devices, smart phones (useful in product / object identification and gathering associated information)

Agriculture Usecase Conclusion & Future Work Internet of Things Key IoT enabling technologies / standards **6LoWPAN** Overview CoRF architecture Constrained Application Protocol (CoAP) IoT protocols - standardization efforts

127 bytes

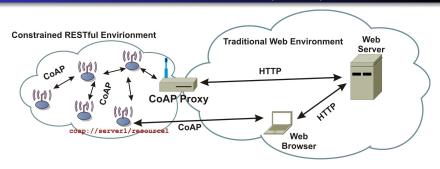

10 mts

6LoWPAN Overview

- IFTE REC 4944 Transmission of IPv6 packets over 802.15.4 LoWPAN networks
- Challenges:

-	IPv6 network
MTU	1280 bytes
Data rate	Mbps/ Gbps
Comm. distance	> 100 mts
Topology	Broadcast

- 6LoWPAN Adaptation Layer
 - Header compression
 - Fragmentation
 - Layer 2 forwarding


5/19

Agriculture Usecase Conclusion & Future Work Internet of Things Key IoT enabling technologies / standards 6LoWPAN Overview

CoRE architecture

Constrained Application Protocol (CoAP) IoT protocols - standardization efforts

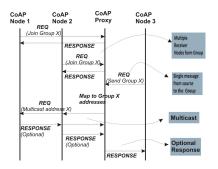
Constrained RESTful Environment (CoRE) Architecture

- CoAP is an application layer protocol (IETF draft) for resource constrained devices
- Adheres to RESTful approach for managing resources and supports mapping to HTTP for Web integration.
- CoAP resources are identified by Uniform Resource Identifiers (URI)

-

Agriculture Usecase Conclusion & Future Work Internet of Things Key IoT enabling technologies / standards 6LoWPAN Overview CoRE architecture Constrained Application Protocol (CoAP) IoT protocols - standardization efforts

Constrained Application Protocol (CoAP)



- Asynchronous message interactions over UDP, Request/Response semantics
- CoAP messages are short 4 bytes header followed by options (Typically, 10-20 bytes header)
- Four message types: Confirmable [CON], Non-confirmable [NON], Acknowledgments [ACK], and Reset [RST]
- Four CoAP methods: GET, POST, PUT and DELETE
- Default resource path /.well-known/core for built-in resource discovery

Agriculture Usecase Conclusion & Future Work Internet of Things Key IoT enabling technologies / standards 6LoWPAN Overview CoRE architecture Constrained Application Protocol (CoAP) IoT protocols - standardization efforts

Some IETF protocols developed in IoT domain

- IP multicast based CoAP Group communication
- DTLS in Constrained Environment (DICE) – defines constrained datagram TLS with specific usecase in IoT
- 6LoWPAN adaption for various link layer technologies
 - Bluetooth low enery (BLE)
 - ITU G.9959 (ZWave)
 - DECT ultra low energy
 - low speed serial lines (RS485)

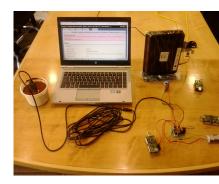
-

Application Requirements Agriculture Sensor Network Agriculture sensor as CoAP Resource Deployment Architecture & plans Remote Sensor Network Connectivity Implementation Remote agriculture field Monitoring Soil Sensor using CoAP

Agriculture Application Requirements

- ERNET India collaborates with ICAR institutions in project development:
 - Indian Institutes of Horticulture Research (IIHR)
 - Krishi Vigyan Kendras
 - Tamilnadu agriculture university
- Useful agriculture parameters suggested by ICAR scientists:
 - **1** Soil properties electrical conductivity, temperature, moisture
 - Soil nutrients Nitrogen (N), Phosphorous (P), Potassium (K)
 - Spectral reflectance for plant nutrients
- Support for remote field deployments & monitoring

Application Requirements Agriculture Sensor Network Agriculture sensor as CoAP Resource Deployment Architecture & plans Remote Sensor Network Connectivity Implementation Remote agriculture field Monitoring Soil Sensor using CoAP


Agriculture Sensor Network - Development setup

• Hardware:

- Heterogeneous development platforms -TelosB, IRIS, AVR Raven. (Our CoAP based agriculture usecase is based on TelosB)
- Soil Sensor: Decagon 5TE Soil Sensor
- Netgear WNDR 3800 running OpenWRT configured as 6LoWPAN Edge Router

Software:

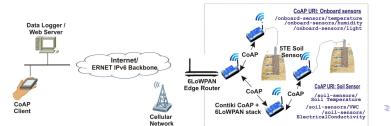
- Operating System: Contiki 2.6
- 6LoWPAN stack Contiki µIPv6
- 3 CoAP Stack Contiki Erbium CoAP

Application Requirements Agriculture Sensor Network Agriculture sensor as CoAP Resource Deployment Architecture & plans Remote Sensor Network Connectivity Implementation Remote agriculture field Monitoring Soil Sensor using CoAP

Modeling Soil Sensor Properties as CoAP Resource

- CoAP resource parameters resource name, methods supported, URI Path string, resource type.
- Each resource has to implement an associated handler function
- CoAP response can be plain text, xml, JSON based on client requested format
- Example:
 - 1

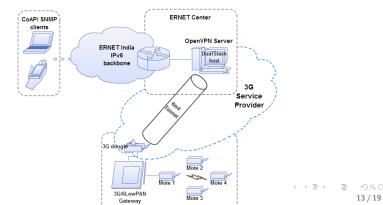
RESOURCE(temperature, METHOD_GET, "onboard-sensors/temperature", "title="Sensirion Temperature Sensor (supports JSON)";rt="TemperatureSensor"");


RESOURCE(vwc, METHOD.GET, "soil-sensors/VWC", "title="5TE Soil Sensor (supports JSON)";rt="SoilSensor"");

Application Requirements Agriculture Sensor Network Agriculture sensor as CoAP Resource Deployment Architecture & plans Remote Sensor Network Connectivity Implementation Remote agriculture field Monitoring Soil Sensor using CoAP

12/19

Agriculture Sensor Deployment Architecture & Plans


- WSN: Wireless Sensor Network comprises of motes running a WSN application and a light-weight CoAP server
- 6LoWPAN border router (6LBR) The 6LBR acts as a gateway between the 6LoWPAN field network and the IPv6 backbone connecting through WiFi or 3G.
- PAN Coordinator Central controller for the WSN.
- **CoAP client** It is located remotely over the IPv6 network and enquire the WSN by invoking commands like CoAP GET /CoAP PUT.
- Database/Web Server Used for logging sensor data for offline access (by the farmers or scientists).

Application Requirements Agriculture Sensor Network Agriculture sensor as CoAP Resource Deployment Architecture & plans Remote Sensor Network Connectivity Implementation Remote agriculture field Monitoring Soil Sensor using CoAP

ERNET connectivity using 6LoWPAN Gateway

- **OpenVPN Server** 6in4 tunnel establishment from Pandaboard to ERNET center for end-to-end IPv6 using OpenVPN
- Pandaboard 3G/6LoWPAN Gateway, OpenVPN client

Application Requirements Agriculture Sensor Network Agriculture sensor as CoAP Resource Deployment Architecture & plans Remote Sensor Network Connectivity Implementation Remote agriculture field Monitoring Soil Sensor using CoAP

Implementation

Hardware:

- TelosB IEEE 802.15.4 compliant, MCU TI MSP430, Chipcon CC2420.
- Soil Sensor 5TE from Decagon supporting Soil temp., moisture and electrical conductivity.
- WiFi/6LoWPAN Gateway Netgear WNDR 3800
- **3G/6LoWPAN Gateway** Pandaboard ES that uses TI OMAP4460 SoC.
- Software:
 - Contiki Open source OS for Internet of Things.
 - **OpenWRT** Linux based firmware for embedded devices.
 - Fedora18-panda-armhfp Fedora linux for Pandaboard.

Application Requirements Agriculture Sensor Network Agriculture sensor as CoAP Resource Deployment Architecture & plans Remote Sensor Network Connectivity Implementation **Remote agriculture field** Monitoring Soil Sensor using CoAP

Agriculture field – KVK Hirehalli

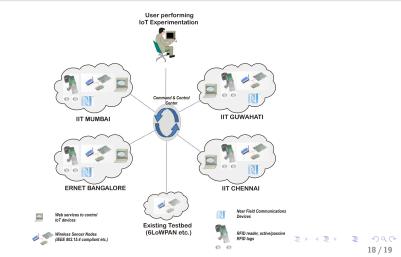
∽ < (~ 15 / 19

Application Requirements Agriculture Sensor Network Agriculture sensor as CoAP Resource Deployment Architecture & plans Remote Sensor Network Connectivity Implementation Remote agriculture field Monitoring Soil Sensor using CoAP

Web based monitoring

😣 🚍 🗐 🛛 [aaaa::212:7400:1465:c	d70c]/onboard-sensors/tempe	rature - Mozilla F	irefox
<u>File Edit View History Boo</u>	kmarks <u>T</u> ools <u>H</u> elp		
🔟 [aaaa::212:7400:1465:d70c]/o	n 🕂		
🔶 🔟 coap://[aaaa::212:7400):1465:d70c]:5683/onboard-ser	isors/temperat 🏠	🕶 🕙 🛃 🕶 Google 🔍 🏠
🝳 Discover 🛛 🧲 GET 👂 PO	ST 😕 PUT 🔀 DELETE 🚦	Observe Payl	load Text 🗘 Behavior → CoAP 08
[aaaa::212:7400:1465:d70	0c]:5683 (RTT: 179ms)		Debug options
2.05 Content	Accept		
▼ ⓒ .well-known	Value	Op	Content-Type
- Q core	T Acknowledgment 2.05 Content	Conten 0	v
▼	2.05 Content		Block-Down Block-Up Auto
- leds	1		block no. x block no. x
 • • • toggle • • • onboard-sensors 	Payload (4)		Token
Onboard-sensors Onboard-sensors	😨 Incoming 💽 Rendere	d 😡 Outgoing	use hex (0x) or string x
- light	1785		Observe
• temperature			use integer x
▼ () soil-sensors			ETag
Electrical Conductivity			use hex (0x) or string X
Soil Temperature			If-Match
● VWC			use an ETag X
			☐ If-None-Match
			Uri-Host Uri-Port
			not set x n/s x

≣ ્ર 16/19


ERNET - IoT Testbed plan IoT Testbed Architecture

IoT Testbed plans

- Implementing IoT testbed comprising heterogeneous legacy and possible new types of devices
- Support IoT experiments to benefit academic and research community in improving the knowledge of IoT hardware and software infrastructure
- Semantic technologies and ontology development to the benefit IoT community
- Help scientific community in enhancing their knowledge about loT and its relevance to their application domain (smart agriculture, smart health, smart grid)
- Facilitate IoT innovation enhancing its impacts and define necessary standards for IoT

ERNET - IoT Testbed plan IoT Testbed Architecture

Distributed IoT Testbed

ERNET - IoT Testbed plan IoT Testbed Architecture

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

19/19

Thank you!, any questions?

Email: paventhan@eis.ernet.in

